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Abstract. This paper concerns the surface-tension-driven flow of a thin layer of viscous liquid following a sudden
change in the shape of its substrate. It is assumed that the substrate either develops an isolated hump or bends
to create an interior corner. The flow is modelled using an evolution equation derived from lubrication theory,
extended in the case of a corner with fully nonlinear expressions for interfacial curvature and volume conservation.
Numerical simulations and large-time asymptotics are used to describe the evolution of the film. Over long times
the film typically forms a quasi-static puddle adjacent to the hump (or in the corner) and a wave-like disturbance
propagates into the far field. For sufficiently large humps and sharp corners, the film pinches off to form an effective
contact line at the edge of the puddle, at which the film height tends to zero as time tends to infinity; as long as
the film does not rupture (which it cannot in the mathematical framework adopted), the effective contact line drifts
slowly away from the hump towards a limiting position dictated by the transient dynamics. Flows off humps with
maxima less than a critical height have a qualitatively different structure, captured by one of two possible branches
of similarity solutions of the thin-film equation, whereby pinch-off does not occur.
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1. Introduction

This paper is concerned with the surface-tension-driven readjustment of a thin layer of viscous
liquid following a sudden change in the shape of adjacent solid surfaces. Typical situations that
we envisage are illustrated in Figure 1 (a–c). An initially uniform liquid layer coating a flat
plane may be disturbed either though a sudden change in the shape of its substrate (for example
the formation of a localised hump, or bending of the substrate to form an interior corner), or
through sudden contact between the liquid layer and a second surface, which itself may be wet
or dry (for example a sphere that is brought into contact with a film coating a flat plane). Such
situations arise widely in industrial contexts, for example when geometrical imperfections or
external disturbances create defects in coatings. Important biological applications arise in the
lung, when the liquid lining of an airway redistributes following the impact of an inhaled
particle, or following contact between the wet walls of a collapsing airway [1]; similar flows
arise in the eye [2], where the tear film coats the curved cornea. In the flows we consider
here the film typically evolves to form a quasi-static puddle connected to a liquid film of
unbounded lateral extent (Figure 1d). The capillary pressure in the puddle (the free surface of
which has negative curvature) is lower than that in the far field, where the uniform film sits
on a flat substrate. The resulting pressure gradient pulls fluid into the puddle, allowing the
puddle to grow indefinitely (or until the films thins sufficiently for intermolecular forces to
become significant, for example causing the film to rupture). We wish to determine the rate at
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Figure 1. Typical thin-film flows relevant to the present study: (a) a film coating a hump; (b) a film in an interior
corner; (c) a film between touching surfaces. A common feature is a puddle connected to an unsteady capillary
wave (d).

which the puddle grows and its volume at large times. Such considerations are significant for
example when evaluating the adhesive capillary force between touching wet surfaces.

The redistribution of the liquid film is driven by surface tension, mediated by gradients in
the curvature of the substrate. These gradients may either be spatially distributed (in the case of
a hump) or concentrated near a point (in the case of a corner). A number of models have been
proposed to describe thin-film flows on non-uniformly curved surfaces, most taking the clas-
sical thin-film equation of lubrication theory [3, 4] as a starting point. Schwartz and Weidner
[5], for example, included a driving curvature-gradient term in the thin-film equation to model
flow off an exterior corner in a bounded domain. While their model gives realistic predictions,
it is not strictly asymptotically consistent (in the problem they studied) because the driving
curvature gradient varied on a lengthscale short compared to the film depth (moreover, such
formulations in body-fitted coordinates may not conserve mass accurately [6]). Others have
used a similar formulation to describe levelling flows on non-uniform surfaces [7] and flows
driven by a pressure gradient or body force over non-uniform topography [8, 9]. The classical
lubrication-theory approach is uniformly valid in space when gradients in the curvature of the
substrate and of the interface vary on lengthscales that are long compared to the film depth. In
this limit, lubrication theory has been used to model the readjustment of a thin liquid layer in
a weakly curved cylindrical tube [10] and off a hump in a bounded domain [11, 12].

Asymptotically rational models for flows over arbitrarily curved surfaces, subject to vari-
ous constraints on the substrate curvature gradient and film thickness, have been derived by
a number of authors [6, 13, 14]. The resulting evolution equations differ in specific details,
but between them account for corrections ensuring mass conservation when employing body-
fitted coordinates [6], weakly nonlinear corrections to the expression for interfacial curvature,
a geometric correction to the mobility term in the expression for the flux [6], and three-
dimensional effects [6, 13, 14]. An alternative approach to such problems is to formulate
an evolution equation that is effectively a composite asymptotic approximation in which the
classical thin-film equation is extended by retention of exact curvature terms in the expression
for the pressure gradient, and by incorporation of geometrical factors ensuring exact mass
conservation in body-fitted coordinates [11, 15]. This strongly nonlinear but partially ad hoc
approach provides an accurate description both of regions of the flow in which the film is
relatively deep and quasi-static, and in which the film is thin and unsteady. Provided the thin
film is formed exclusively of such regions, this approach has been shown to compare well to
full Stokes-flow computations in a specific problem related to lung airways [15]. Of course,
such an approach is unlikely to provide an accurate description of regions of the flow where
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a deep film evolves unsteadily, and so for example may not provide an approximation that is
uniformly valid in time. A similar strategy has been followed by Stocker and Hosoi [16, 17],
who used a hyperbolic coordinate system to derive evolution equations for thin-film flows in
90◦ corners.

The problems studied below address a simple issue. In configurations in which a film
evolves to a configuration in which a quasi-static puddle is connected to a spatially unbounded
film (Figure 1d), a pressure gradient will continually drive fluid into the puddle, causing it to
grow. We wish primarily to establish the dynamics of the effective contact line at the edge of
the puddle and of the overall film. Howell [13] studied a related problem, when the curvature
gradient at an interior corner is distributed over a long lengthscale so that the film’s evolution
can be described by a hyperbolic equation, in which the film dynamics are driven entirely
by substrate gradients. Aradian, Raphaël and de Gennes [18] examined the structure of the
margins of a soap film, showing how a self-similar capillary wave is connected to a static
border through a thin draining region of the kind described by Jones and Wilson [19]. We
present numerical simulations revealing how a similar asymptotic structure arises for flows
driven off sufficiently tall humps or sharp corners. A detailed asymptotic analysis reveals new
spatial and temporal behaviour explaining how fluid volume is distributed during the flow’s
evolution. We then show how a qualitatively different flow structure arises for shallow humps,
associated with one of two possible branches of similarity solutions of the thin-film equation.

The paper is organised as follows. In Section 2 we describe the formulation of our model
for thin-film flow off humps (using classical lubrication theory) and in interior corners (using
a composite evolution equation, parameterized using a method of spines following [15]).
Numerical results (Section 3) are then used to motivate and validate large-time asymptotic
approximations (Section 4).

2. Models and methods

We briefly describe the evolution equations governing flow off a hump (2) and in a corner (7)
before outlining our numerical method (Section 2.2).

2.1. PROBLEM FORMULATION

We model the flow of a two-dimensional incompressible Newtonian fluid of constant viscosity
µ bounded above by a passive gas and below by a rigid, possibly curved, stationary substrate.
We assume that the surface tension σ acting at the free surface is uniform and we neglect grav-
ity and van der Waals forces. For low-Reynolds-number thin-film flows above a flat substrate,
classical lubrication theory [4] yields the well-known evolution equation

ht + 1

3
(h3hxxx)x = 0 (1)

for h(x, t), the non-dimensional height of the film measured normal to the substrate. Here
subscripts denote partial derivatives with respect to distance along the flat substrate x and
time t . In (1), h is scaled on H∞, the undisturbed far-field film thickness, while x is scaled on
H∞/ε for some ε � 1 and t on µH∞/ε4σ . Consistent with the lubrication approximation,
the non-dimensional pressure p = −hxx, where p is scaled on ε2σ/H∞.
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2.1.1. Hump
When gradients in substrate curvature vary over distances large compared to the fluid depth,
they can be incorporated into (1) in an asymptotically consistent fashion, yielding [5]

ht + 1

3
(h3(h + g)xxx)x = 0, (2)

where the substrate and free-surface locations lie at y = g(x) and y = g(x) + h(x, t),
respectively, in Cartesian (x, y)-coordinates. We employ (2) to model capillary-driven flow
off of a Gaussian-shaped hump by setting

g(x) = g0 exp[−(x/2d)2]. (3)

The O(1) parameters g0 and d are specified below. Here we may regard ε as the ratio of H∞ to
the dimensional hump width. We shall examine solutions of (2) on a finite domain 0 ≤ x ≤ L,
where L � 1 is sufficiently large for the film to remain undisturbed near x = L over the times
of interest. We impose a uniform initial condition h(x, 0) = 1 for 0 < x < L and symmetry
and zero-flux boundary conditions,

hx(0, t) = hxxx(0, t) = hx(L, t) = hxxx(L, t) = 0. (4)

2.1.2. Interior corner
The hump formulation above is firmly based in rational thin-film asymptotics. However, al-
though several authors have derived evolution equations for flows over curved substrates [6,
13, 14], none of these equations remains asymptotically consistent in the limit when gradients
in substrate curvature vary over a lengthscale short compared to the film depth; in particular,
none can rationally describe flow near a sharp interior (or exterior) corner, where the substrate
curvature is singular.

It is natural to attempt a formulation in which the domain of interest excludes the corner,
its presence being imposed instead via specification of appropriate boundary conditions. We
briefly describe this approach and its pitfalls before outlining a method that we have found
more satisfactory. As shown in Figure 2, we let the y-axis bisect a corner of interior semi-
angle α and intersect the free surface at some point. The time-varying distance (measured
along the substrate) between the corner and the normal projection of this point onto one of the
walls is denoted by su(t). If s measures distance along that wall from su(t), then, for s > 0,
the substrate is flat and the location of the free surface can be uniquely specified by measuring
the film height h(s, t) normal to the substrate. In this formulation, (1) becomes

ht − ṡuhs + 1

3
(h3hsss)s = 0, (5)

where ṡu ≡ dsu/dt must be determined by enforcing the geometric constraint h(0, t) =
su tan α. Boundary conditions at s = 0 arise from imposition of zero mass flux across the
corner bisector (for flows symmetric with respect to the bisector) and symmetry about the y

axis; the latter condition requires hs(0, t) = − cot α.
A necessary condition for (5) to be asymptotically consistent is for γ ≡ π/2 − α → 0+

(i.e., for very shallow corners), for only then is |hs(s, t)| assured to be uniformly small. In that
limit, the initial boundary-value problem simplifies to (1), subject to

hx(0, t) = −γ /ε, hxxx(0, t) = 0, hx(L, t) = 0, hxxx(L, t) = 0, (6)
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Figure 2. Corner geometry. The computational do-
main is s ≥ 0.

Figure 3. Computational domain for simulations of
draining into an interior corner. β(s) measures the
angle between the spine and substrate normal. h0 is
the initial height of the corner puddle.

i.e., s ≈ x and su(t) ≈ 0. Unfortunately, this formulation proves to be numerically ill-
conditioned, exhibiting large volume fluxes near x = 0. The source of the difficulty – and
the means for its amelioration – may be understood by recalling that the corner represents a
discontinuity in substrate curvature; indeed, setting gxx(x) = 2(γ /ε)δ(x) where δ(x) is the
Dirac delta function, the problem is formally equivalent to (2) subject to (6) with hx(0, t) = 0
replacing the inhomogeneous slope condition. Analysis of the solution as x → 0 indicates
that hxxx ∼ 2(γ /ε)dδ/dx, accounting for the singular fluxes near the origin observed in
simulations. This formulation may be regularised via appropriate smoothing of gxx(x).

Although (5) is not consistent for sharp corners when γ is O(1), the singularity in substrate
curvature does not directly pose numerical difficulties, since, for sufficiently deep corner
puddles, the computational domain does not border the corner, i.e., su(t) is bounded away
from zero. To improve the accuracy of (5) in regions where |hs(s, t)| is not small, hss(s, t) can
be replaced with k(s, t), the exact curvature of the interface (see (11) below). Nevertheless,
there remains an inherent difficulty with this approach related to the specification of q(0, t),
the flux across su(t). This flux is determined by enforcing global volume conservation, where
the total fluid volume is

V = s2
u

2
tan α +

∫ L

su(t)

h(S, t)dS.

Setting dV/dt = 0, using Leibnitz’s rule and substituting ht = −qS , where S ≡ s + su(t),
we find q(0, t) = 0. Given the zero-flux condition across the corner bisector, this implies
that ṡu = 0 – a contradiction unless the puddle height remains fixed. (Numerical simulations
based on this formulation show time-dependent puddle heights and, thus, cannot conserve
mass accurately in body-fitted coordinates.)

There are therefore a number of difficulties in extending classical lubrication theory to
describe flows near an interior corner. We have therefore employed an alternative formulation,
namely Heil and White’s [15] modified thin-film equation coupled to a parameterization of the
film thickness using spines. The composite evolution equation

ρt + 1

3
(h3ks)s = 0 (7)

provides an accurate description of flows in which a deep quasi-static puddle is connected to a
thin film, since it (a) conserves mass in appropriate coordinates, (b) enforces the exact Young-
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Laplace constraint in regions where the film is deep and (c) accurately predicts the unsteady
dynamics of thin-film regions and, hence, the fluid flux into (or out of) the corner puddle. As
shown in Figure 3, s in (7) measures distance along the flat substrate from the corner, while
h measures the height of the film along certain prescribed directions (spines) [20]. We set the
spine-angle distribution

β(s) =
[

1 − tanh((s − s∗)/	)

2

] [
tan−1

(
Bh0 − s cos α

s sin α

)
− α

]
, (8)

where h0 is the initial height of the corner puddle, the spine-distribution parameters 	 and
B are given below and s∗ = Bh0[sin α(cot α + tan α)]−1. By selecting B appropriately, the
spines do not intersect within the interior of the fluid (near s = 0, they intersect the y-axis at
a height B times the initial puddle height), and they become normal to the substrate at s ≈ s∗,
before the film becomes thin. The dimensionless film volume per unit length ρ(s, t) is chosen
to ensure exact mass conservation as follows:

ρ(s, t) =
[

cos(β(s)) + dβ

ds
(s)

h(s, t)

2

]
h(s, t). (9)

In terms of the (x, y)-coordinates of the free surface,

x(s, t) = s sin α − h(s, t) cos[α + β(s)], (10a)

y(s, t) = s cos α + h(s, t) sin[α + β(s)], (10b)

the exact curvature of the free surface is

k(s, t) = yssxs − xssys[
x2

s + y2
s

]3/2 . (11)

Since thin-film scalings are inappropriate in the corner puddle, isotropic spatial scalings have
been used in writing (7); thus, time is scaled on µH∞/(εσ ) (where H∞/ε is comparable to the
width of the puddle). In terms of the thin-film timescale, (7) transforms to ρt + 1

3ε−3(h3ks)s =
0. At very early times, before the flow near the corner has relaxed to a quasi-static shape, we do
not expect ε−3(h3ks)s to provide an accurate representation of capillary-driven fluxes. How-
ever the free surface in the corner (where the isotropic spatial scalings are appropriate) rapidly
adjusts to a quasi-static shape, and the governing equations then provide an approximation
that is uniformly valid in s (albeit one that is not uniformly valid in time).

2.2. NUMERICAL METHOD

The evolution equations (2) and (7) were discretised in space using second-order accurate
centred finite-difference approximations. Film heights and curvatures were computed on one
set of (N + 1) nodes, while fluxes were computed on an interlaced set. Boundary conditions
were enforced using ‘ghost’ nodes. For all of the simulations discussed in this paper, N = 104

and MATLAB’s ode15s routine with adaptive time-stepping and backward differencing was
used to advance the resulting system of ODEs forward in time. The accuracy of the results
was checked by independently varying the number of grid points and the domain length, by
verifying numerical mass conservation to better than 0·01% and by making comparison with
the asymptotic solutions described in Section 4. Finally, it was confirmed that the fluid near
the far boundary remained undisturbed for the duration of each simulation.
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2.2.1. Hump
We numerically integrated (2–4) setting the hump-width parameter d = 0·5. Computations
were carried out for up to O(107) time units. We show simulations below for which g0 = 10
with L = 500, and g0 = 2·827 and g0 = 4 with L = 5000. To simultaneously resolve flow
structures on top of the hump, near its base and in the far field, the following mapping [21,
Appendix A.4] was used:

X = (b + 1)x

2(a + x)
, where a = x̄L

L − 2x̄
, b = a

x̄
and 0 ≤ X ≤ 1. (12)

This mapping concentrates half of the grid points (which are equispaced in X) between 0
and x̄. We set x̄ = 5, yielding an x-grid spacing of O(10−4) on top of the hump, O(10−3)

at its base and O(1) in the far field. Validation was achieved by comparing with simulations
employing an equispaced x-grid and by confirming that the numerical results were insensitive
to the precise choice of x̄. Results from these simulations are presented in Sections 3.1 and
3.3 below.

2.2.2. Interior corner
Numerical integrations of (7) were carried out for an interior corner semi-angle α = π/5 and
a domain length L = 30. The spine parameters B and 	 were set to 1·5 and 0·02 respectively,
after ensuring that the computational results were insensitive to variations about these values.
Symmetry boundary conditions were imposed at both ends of the domain:

ys(0, t) = ks(0, t) = hs(L, t) = ks(L, t) = 0. (13)

For the simulations presented here, the initial puddle height h0 = 1·5. The initial free-surface
distribution above the corner was chosen to be an arc of a circle of radius 2, while for s >

sc ≡ 2 cot α, the initial film thickness was prescribed to be uniform and equal to its value
at sc(≈ 0·059). An equispaced s-grid was found to be adequate for these parameter values.
Results of these simulations are shown in Section 3.2 below.

3. Numerical results

We present results here for a large hump (Section 3.1), an interior corner (Section 3.2) and
small humps (Section 3.3). The meaning of the terms ‘large’ and ‘small’ will be made more
precise below.

3.1. LARGE HUMP

Figure 4 shows the initial evolution of the interface and liquid pressure on top of the hump
(panels a, c) and in the far field (b, d). The maximum hump height in this example is 10 times
the far-field film thickness. The corresponding evolution over later times is shown in Figure 5.
A local minimum in h forms at the edge of a small quasi-static drop on top of the hump; across
this minimum (near x = 0·3) the pressure varies sharply. The evolution of liquid on top of
a hump in a bounded domain has been described in detail elsewhere [11, 12]. Under certain
circumstances, up to three intermediate scaling regimes can be identified. First, the effective
contact line at the edge of the drop advances slowly (like (t/ log t)1/7). Second, the contact
line is stationary and the pressure difference across the contact line drives an O(t−5/4) flux
of liquid out of the drop. Finally, the local curvature gradient drives liquid with an O(t−3/2)
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Figure 4. Thin-film flow off a large hump satisfying (2–4) with g0 = 10: interface shape (a,b) and pressure (c,d)
are plotted for t = 0·1, 0·4, 1·9, 5·0. The thick lines in (a, b) show the hump shape.

Figure 5. Thin-film flow off a large hump: interface shape (a, b) and pressure (c, d) at times 7080 ≤ t ≤ 3·55×106.
(a, c) show near-field and (b, d) far-field evolution. The hump is shown in (a).
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Figure 6. Thin-film flow off a large hump: the flow
near the puddle’s effective contact line, in rescaled
variables for 7080 ≤ t ≤ 3·55 × 106, showing the
interface shape (a) and pressure (b).

Figure 7. Location of the puddle’s effective contact
line xmin(t) (a) and its time derivative (b). The dashed
line in (b) has slope − 5

4 .

flux out of the drop. While we ensure our numerical grid is always fine enough to resolve
the corresponding flow structures, our interest here is in the behaviour elsewhere in the flow
domain, so we do not describe these structures in detail below.

Figures 4 and 5 show clearly how the film evolves rapidly to form a quasi-static puddle
adjacent to the hump, with its edge near x = 4, connected to a wave-like disturbance that
propagates into the far field. We characterise the effective contact line at the edge of the puddle
by the local film minimum (xmin(t), hmin(t)). At large times, hmin falls to zero roughly like
t−1/2, as demonstrated in Figure 6 where PDE solutions collapse when t1/2h and −hxx are
plotted against (x−xmin)t

1/4. The local asymptotic structure resembles that identified by Jones
and Wilson [19], as discussed in Section 4.1 below. xmin(t) evolves very slowly as t increases,
approaching a finite limit as t → ∞ (Figure 7a). The rate of approach is characterised in
Figure 7(b), where dxmin/dt exhibits an approximate t−5/4 scaling (justified below).

The self-similar nature of the flow in the far field is illustrated in Figure 8, which plots
h and −t1/2hxx versus t−1/4(x − xmin). The PDE data for the interface shape collapse well,
showing good agreement with a similarity solution (also determined below). The pressure data
(Figure 8b) also collapse well over the majority of the domain, but for x near xmin the rescaled
pressure has a local maximum that rises slowly but indefinitely as t increases.

3.2. CORNER

Simulations for a sharp corner (obtained using (7)) show broadly similar behaviour to that for
a large hump. Figure 9 shows how a quasi-static puddle forms in the corner, with a rapid jump
in pressure across the effective contact line at (s, h) = (smin(t), hmin(t)), and an unsteady wave
propagating into the far field. Because the initial condition for this simulation was constructed
by patching together interface shapes with piecewise uniform curvature, the relaxation of an
initial jump in interfacial curvature is evident in Figure 9(c). The PDE solutions near smin

collapse under the same scalings used previously (Figure 10), indicating a local Jones-Wilson
structure similar to that identified in Figure 6. The location of the primary local minimum smin

is a more complex function of time than in the previous example (Figure 11). The minimum
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Figure 8. Far-field PDE solutions for flow off a large hump for 7080 ≤ t ≤ 3·55 × 106 are plotted in rescaled
variables, showing (a) film height and (b) pressure. The dashed lines show the similarity solution F0 satisfying
(20a–c).

Figure 9. Flow in an interior corner: (a) the corner and interface shapes for 0·4 ≤ t ≤ 106 in Cartesian coordinates
(10a, 10b) (the solution is symmetric about x = 0); (b) the far-field film evolution with respect to distance s along
the wall. The near- and far-field pressure distributions are plotted with respect to x in (c) and s in (d).
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Figure 10. PDE data for flow in a corner for 3981 ≤
t ≤ 106, rescaled and replotted showing the interface
shape (a) and pressure distribution (b) near the edge of
the puddle.

Figure 11. (a) smin and (b) its time derivative as
functions of time. The dashed line in (b) has slope
−5/4.

Figure 12. Thin film evolution in an interior corner: (a) the far-field interface shape (scaled on the far-field
thickness h∞) and (b) the pressure are plotted against t−1/4(s − smin) for 3981 ≤ t ≤ 106. The dashed lines
show the similarity solution Fo satisfying (20a–c).

initially advances, reverses briefly (the change of sign in dsmin/dt leads to the kinks in the
log-log graph in Figure 11b) and then advances slowly toward a finite limit. The evolution
over long times again shows dsmin/dt scaling approximately like t−5/4 at large times.

The far-field evolution of the film is also self-similar, with PDE data collapsing when the
film thickness and rescaled pressure are plotted against t−1/4(s − smin) (Figure 12). The large-
time limit appears to be the same similarity solution as that shown in Figure 8 and determined
below. Unlike the earlier example, there is a more noticeable drift in the maximum film height
up toward the large-time limit. As before, the rescaled pressure has a local maximum for s

near smin that increases slowly with t .
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Figure 13. Flow off a hump with (a,c,e) g0 = 2·827 and (b,d,f) g0 = 4. Solutions shown for 106 ≤ t ≤ 108, at
times equispaced in log t . (a,b) and (c,d) show film height versus x and x/t1/4 respectively; (e,f) shows rescaled
pressure. The dashed lines in (c,e) show the similarity solution satisfying (20a,b) and (38).

These observations are discussed with respect to asymptotic results in Section 4.2 below.

3.3. SMALL HUMPS

Finally we consider the drainage of a thin film off shallower humps than those considered
in Section 3.1. Figure 13(a, b) shows the film thickness plotted against x when the hump has
maximum height of 2·827 and of 4·0 respectively. In the former case the minimum height hmin

remains bounded away from zero and xmin moves rapidly away from the hump (Figure 13a);
in the latter case hmin appears to diminish continually towards zero, and xmin advances more
slowly (Figure 13b). When plotted against x/t1/4 (Figure 13c,e), the flow in the former case is
self-similar for large time, approaching a similarity solution determined in Section 4.3 below
uniformly. The stronger drift in the latter case (Figure 13d,f) shows that xmin does not scale like
t1/4, nor does it appear to be approaching a limit (as in Figure 7) over the times shown. Other
simulations (not shown) indicate that the example shown in Figure 13(a,c,e) is representative
of flows off humps with maximum heights less than around 3, for which hmin remains bounded
away from zero as t → ∞; comparison with flows off larger humps suggests that the example
in Figure 13(b,d,e) would ultimately demonstrate pinch-off behaviour of the sort described in
Section 3.1 (for which hmin → 0 as t → ∞). Our computations therefore indicate that a qual-
itative transition in behaviour occurs for hump heights in the neighbourhood of 3, although
in some cases it is not possible to distinguish whether or not pinch-off will ultimately occur,
given the finite times available in a computation. However asymptotic analysis below predicts
that the critical hump height for the transition between small- and large-hump behaviour is
approximately 3·36.
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Figure 14. Schematic diagram of the four asymptotic regions of a thin film flowing off a large hump at large times.

4. Large-time asymptotics

Numerical solutions for flow off a large hump or in a sharp corner show that hmin tends to
zero roughly like t−

1
2 (Figures 6, 10), while the leading edge of the disturbance in region III

advances like t
1
4 (Figures 8, 12). We now seek the large-time asymptotic structure of these

solutions. We describe the situation first for a large hump (Section 4.1, for which the local
minimum at the edge of the puddle hmin → 0 as t → ∞), then for a sharp corner (Section 4.2)
and a small hump (Section 4.3, for which hmin remains bounded away from zero as t → ∞).

4.1. LARGE HUMPS

For the case of a large hump (Figure 14) we divide the solution domain into four regions:
a quasi-static slowly growing puddle (region I); a short quasi-steady region acting like a
valve (II); a long region including an unsteadily propagating capillary wave (III) and a passive
transitional region (IIa). We now discuss the leading-order solutions in each region.

4.1.1. Region I
As shown in Figure 5(c), the interface in region I has approximately uniform curvature κ and it
meets the solid surfaces at its effective contact lines with zero contact angle. Let the effective
contact line at x = x1(t), say, lie on the hump and that at x = x0(t), say, lie near xmin(t). Then
the quasi-static puddle has the leading-order shape

h + g = 1

2
κ(x − x0)

2 (x1 ≤ x ≤ x0), (14)

with contact line conditions

g(x1) = 1

2
κ(x1 − x0),

dg

dx
(x1) = κ(x1 − x0)

2 (15)

allowing x1 and κ to be determined in terms of x0 and the hump profile g(x). The volume of
liquid in the puddle is

VI(x0) =
∫ x0

x1

[
1

2
κ(x0 − x)2 − g(x)

]
dx. (16)

In certain cases x0 is large enough relative to the width of the hump for x1 to lie very
close to the origin, in which case we may approximate the shape of the hump (3) using the
expansion g(x) = g0 − 1

2g2x
2 + O(x4) for given constants g0 > 0, g2 > 0. Equation (15)

gives

κ = 2g0/x
2
0 . . . , x1 = 2g0/(g2x0) + . . . for g0/(g2x

2
0 ) � 1. (17)
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Figure 15. (a) F0 (solid) and F1 (dashed) versus ξ ; (b) −F0ξξ (solid) and −F1ξξ (dashed) versus ξ .

In this case, with relative error O(1/x0),

VI ≈ 1

3
g0x0 − G + . . . (18)

where G = ∫ ∞
0 g dx = O(1), assuming that g → 0 sufficiently fast that g = 0 for x ≥ x0.

4.1.2. Region III
To capture the propagating wave (Figure 8), we seek a large-time solution of (1) of the form

h(x, t) = F0(ξ) + t−
1
4 MF1(ξ) + . . . , x = x0(t) + ξ t

1
4 , (19)

assuming F0, F1 and ξ are O(1). M is a constant, discussed below. We assume that x0t =
O(t−

5
4 ) (as indicated in Figure 7, and to be verified a posteriori): the slow drift of x0(t) then

appears at higher orders than we consider here. We obtain at leading order from (1)

−1

4
ξF0ξ + 1

3
(F 3

0 F0ξξξ )ξ = 0, (20a)

which must be solved subject to

F0 → 1 as ξ → ∞, (20b)

F0 → 0, F 3
0 F0ξξξ → 0 as ξ → 0. (20c)

Linearization of F0 around its far-field value and use of a WKB approximation shows that
F0 ∼ 1 + G0 where G0 → 0 as ξ → ∞ and

G0ξ ∼ a cos

((
3

4

)11/6

ξ 4/3 + b

)
exp

(
−1

2

(
3

4
ξ

)4/3
)

(21)

as ξ → ∞, where a and b are constants. Here we have discarded a growing eigenmode (of
the form exp

[
( 3

4ξ)4/3
]
), and a further contribution that is uniform as ξ → ∞. The boundary-

value problem (20) therefore requires two boundary conditions to be imposed at either end of
the domain.

The behaviour of F0 as ξ → 0+ takes the form

F0 ∼ Aξ + 3

16A2
ξ 2 log ξ + Bξ 2 (22)
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for constants A and B. Bowen [22] and Aradian et al. [18] have computed solutions of (20);
for fixed A, one can shoot for various B until F0ξ → 0 as ξ → ∞ (thereby suppressing the
growing eigenmode), and then rescale F0 and ξ to satisfy (20b). As shown previously [18,
22], to satisfy (20), A ≈ 1·48 and B ≈ −0·337. Our approximate numerical estimates of F0

and −F0ξξ are plotted in Figure 15; the maximum value of F0 is close to 1·25. The pressure is
weakly (logarithmically) singular as ξ → 0. The leading-order flux near ξ = 0 is of the form
1
3F

3
0 F0ξξξ ≈ Aξ 2/8, so this solution does not account for the smaller oppositely-directed flux

passing upstream through region II into region I.
Figure 8 shows how the interfacial shape computed from (2) converges to the similarity

solution (20) at large times (we assume x0 and xmin are sufficiently close for (x − xmin)t
−1/4

to be equivalent to ξ ), although the pressure distribution exhibits a boundary-layer structure
where h → 0; we investigate this further below.

At the following order (see (19)), (1) implies that the fixed-mass correction term F1 satisfies

−1

4
F1 − 1

4
ξF1ξ + 1

3
(F 3

0 F1ξξξ + 3F 2
0 F1F0ξξξ )ξ = 0. (23)

Because F1 → 0 as ξ → ∞, this may be integrated to give

−1

4
ξF1 + 1

3
F 3

0 F1ξξξ + F 2
0 F1F0ξξξ = 0. (24)

For ξ → ∞, F1 behaves like G0ξ in (21) (with two free parameters) implying that near
ξ = 0, F1 contains a free parameter that can be varied in a shooting procedure to suppress the
mode that grows as ξ → ∞. Because (23) is linear, we are also at liberty to normalise F1 by
imposing

∫ ∞
0 F1 dξ = 1, so that F1 describes the redistribution of a constant fluid mass M

(see (19)). As ξ → 0, we have

F1 ∼ D

[
ξ + Eξ 2 − ξ 2 log ξ

16A3
+ . . .

]
. (25)

Our computations indicate that D ≈ 0·334 and E ≈ −0·142. Approximations to F1 and F1ξξ

are shown in Figure 15.
The volume of liquid in region III is VIII = ∫ L

x0
h dx, where the domain length L is assumed

to be large enough that h → 1 well before x reaches L for all times of interest. Integration by
parts allows the F0 contribution to the integral to be evaluated exactly, because (using (20a))∫ X

0
F0 dξ ∼ X as X → ∞, (26)

so that

VIII = t
1
4

∫ (L−x0)/t
1
4

0
F0 dξ + M

∫ ∞

0
F1dξ = L − x0 + M. (27)

The fixed mass M of fluid is therefore effectively trapped at large times by the effective contact
line at x = x0.

The PDE data in Figure 8 approach the similarity solution F0 from below, so we can infer
that in this example M < 0. Because F1 has a maximum value near that of F0 (Figure 15), the
ξ -location of the maximum in the PDE data does not drift appreciably in Figure 8.

4.1.3. Region II
Motivated by the collapse of the PDE data shown in Figure 6, showing the thin self-similar
draining region near the effective contact line, we follow [19, 23] and set
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h ∼ t−
1
2 H(η), x = x0(t) + t−

1
4 η, (28)

where H and η are O(1), so that (1) becomes (H 3Hηηη)η = O(t−1/2) (again assuming x0t =
O(t−5/4)). Integrating, we have H 3

ηηη = −Q for some constant flux Q > 0. Matching with
region III, we require from (22) that Hη → A as η → ∞. To match with region I via
(14), we require that H ∼ 1

2κη2 as η → −∞. Rescaling using η = −(Q/A4)η̂, H(η) =
(Q/A3)Ĥ (η̂), we obtain

Ĥ 3Ĥη̂η̂η̂ = 1, (29a)

Ĥ ∼ −η̂ as η̂ → −∞, (29b)

Ĥ ∼ 1

2
Cη̂2 + O(1) as η̂ → ∞, (29c)

where C = κQ/A5. We have suppressed the linear term in (29c) via a transverse displacement
in η; x0 and xmin are thus separated at large times by an O(t−1/4) distance. Equation (29) has
a unique solution, with C ≈ 1·2098 and Ĥmin ≡ H ≈ 1·2593 [10, 23, 24], resembling the
collapsed curves in Figure 6. This determines Q in terms of κ(x0).

4.1.4. Region IIa
While we have matched the interfacial slopes between regions II and III, the fluxes and
pressures do not yet match: the flux 1

3h3hxxx through region II is − 1
3Qt−5/4, for example,

while that entering region III is A(x − x0)
2/8t5/4. It is therefore necessary to introduce a

further region across which h is approximately linear but the flux varies, accounting for the
boundary-layer behaviour in the pressure seen in Figure 8. We therefore set

h = t−
1
4 Az + t−

1
2 ĥ(z) + . . . , x = x0(t) + z, (30)

assuming z and ĥ are O(1). Once again, assuming x0t = O(t−5/4) allows us to neglect contact-
line drift in what follows. Substituting in (1) gives

−1

4
Az + 1

3
A3

(
z3ĥzzz

)
z
= 0. (31)

Integrating, we obtain

h = Az

t
1
4

+ 3

A2t
1
2

[
1

16
z2 log z + az2 + bz + c log z + d

]
+ . . . (32)

for constants a, b, c and d. The outer limit (29b) of region II can be written H ∼ Aη −
1
2QA−3 log η + O(1), while the leading-order inner limit of III is given by (22) plus a
correction from (25). Matching allows us to write (32) as

h = Az

t
1
4

+ 1

t
1
2

[
3

16A2
z2 log z+

(
B − 3

16A2
log(t

1
4 )

)
z2 + MDz

− Q

2A3
log z + O(1)

]
+ . . . ,

(where for brevity we here treat log(t) as an O(1) quantity). Differentiating, we then find the
flux in this region to be
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1

3
h3hzzz = t−

5
4

[
1

8
Az2 − 1

3
Q

]
. (33)

Thus region IIa acts as a buffer, providing a source of liquid that can flow both downstream
to region III (in z > (8Q/3A)

1
2 ) and upstream into region I (from z < (8Q/3A)

1
2 ). The

pressure

p = −hzz ∼ − 1

t
1
2

[
3

16A2

(
3 + 2 log

( z

t1/4

))
+ 2B + Q

2A3z2

]
(34)

has a maximum value pmax ≈ 3 log t/(32A2t
1
2 ). This time-dependence explains the slow rise

in the maximum pressure near the origin seen in Figure 8.

4.1.5. Mass conservation
Fluid volume must be conserved during the evolution of the film. Because h(x, 0) = 1 in
0 < x < L, for t � 1 the total fluid volume V = L, where V ≈ VI + VIII (neglecting the
asymptotically negligible volume in region II). Thus, from (16) and (27),

x0 ∼ VI(x0) + M, (35)

where M is the mass of fluid trapped in (or lost from) region III. Equation (35) shows that the
length of region I is determined (through M) by the dynamics over intermediate timescales.
Once t is large, and the film pinches off to form an effective contact line, there is minimal
fluid exchange between regions I and III. We cannot predict the size (or even sign) of M from
the large-time asymptotic analysis. However, we can check the consistency of (35). At large
times, x0 ≈ 4·51 (Figure 7) and hence VI(x0) ≈ 6·91 from (16); (35) implies M < 0, as
already observed from Figure 8.

Because h remains non-zero in region II there is still a weak flux of liquid drawn into
region I from region IIa. The puddle in region I grows continually and x0 advances slowly,
with V ′

I (x0)x0t = 1
3Qt− 5

4 . Assuming x0 → x00, say, as t → ∞, we may therefore write

x0(t) ∼ x00 − 4A5C

3κ(x00V
′
I (x00))t

1
4

, (36)

where the contact line’s ultimate equilibrium location x0 satisfies x00 = VI(x00) + M. Thus
x0t = O(t−5/4), which is small enough to ensure neglect of the contact-line drift terms in the
analysis above, and in agreement with Figure 7.

In the special case when x1 lies near the origin and x0 is large, we have from (18) x0 ≈
(G − M)/( 1

3g0 − 1). This approximation therefore requires that g0 → 3+ to ensure that
x0 � 1. However, Figure 13 indicates that alternative behaviour arises once g0 is as small as
3: we investigate this in Section 4.3 below.

4.2. CORNERS

Having established the large-time asymptotic structure for flow off a large hump, we can also
apply it to flow in a sharp corner. The collapsed PDE data shown in Figure 10 near the pinch-
off point again reveal the familiar Jones-Wilson region-II structure satisfying (29). Figure 12
shows how the collapsed data downstream of the pinch-off point approach the region-III
similarity solution (20) at large times. However the PDE data lie further from F0 than in
the case for a hump (Figure 8), indicating that for the corner simulation the mass deficit M
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Figure 16. (a) Solid curves show F0(ξ) satisfying (20a,b), (38) for values of A1 shown with dots in (b); the dotted
line shows the solution of (20); (b) g0 versus A1.

is larger. (This is presumably because our simulations used a non-uniform initial condition
that distributed additional mass near the vertex of the corner). Since F1 = 0 near ξ = 4·50
(Figure 15a), we expect the PDE data and F0 to be in close agreement here: they intersect
in Figure 12 just beyond ξ = 4. Finally, the slow drift of the puddle’s effective contact line
shown in Figure 11 has a time-dependence consistent with (36).

Once again, the large-time asymptotic analysis tells us that transient dynamics determine
the mass of fluid partitioned between the puddle and the far field by pinch-off, and hence the
ultimate size of the puddle in the corner.

4.3. SMALL HUMPS

Figure 13 suggests that for small Gaussian humps (with g0 between 1 and approximately 3)
at large times, a similarity solution of the form outlined for region III above attaches close to
the top of the hump. To describe this case, we set

h(x, t) = F0(ξ) + Mt−
1
4 F1(ξ) + . . . , x = ξ t

1
4 , (37)

assuming F0, F1 and ξ are O(1) and
∫ ∞

0 F1 dξ = 1. At leading order F0 satisfies (20a,b) plus

F0 = g0, F0ξξξ = 0 at ξ = 0. (38)

We justify these boundary conditions by considering an inner region where x = O(1) in
the neighbourhood of the hump, where the flow satisfies (2). Assuming the flow is locally
quasi-steady, we have Q = 1

3h3(h + gxxx in this region, for same constant Q. To satisfy the
no-flux condition at the origin we require Q = 0. Thus h + g = Ax2 + Bx + C for some
constants A,B,C. To match with the outer similarity solution (37) (where g → 0) we require
A = B = 0. We then impose zero contact angle at some point x = x1 on the hump, so that
h(x1) = 0 and hx(x1) = 0. Since hx(x1) + gx(x1) = 0 to leading order, gx(x1) = 0 and hence
x1 = 0. Then h(0) = 0 requires C = g0, yielding (38) as leading-order boundary conditions
for the outer flow.

The local solution of (20a,b; 38) near ξ = 0 has two free parameters, F0 ∼ g0 + A1ξ +
A2ξ

2 + O(ξ 4). Solutions can be obtained by fixing g0 and A1, shooting with varying A2

to suppress the growing mode for large ξ , and then rescaling ξ and F0 to enforce (20b),
thus changing the value of g0. This yields a one-parameter family of similarity solutions.
Numerical approximations to members of this family are shown in Figure 16. It is convenient
to parameterize solutions numerically using A1 < 0. As A1 falls from zero, solutions increase
in amplitude until A1 = Ac ≈ −9·8 when g0 takes a maximum value gc ≈ 3·36. As A1
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becomes increasingly negative, the solutions appear to approach the solution satisfying (20)
as A1 → −∞ (see Figure 16; we did not attempt to compute solutions for A1 < −17·11).
Parameterizing solutions using g0, computations therefore indicate that (20a, b; 38) has two
solution branches for 1 < g0 < gc, and no solutions for g0 > gc.

Figure 13 demonstrates how PDE data for g0 = 2·827 converge to the corresponding
similarity solution satisfying (20a,b; 38). We therefore conjecture that the branch of solutions
in Figure 16(b) between Ac < A1 < 0 is stable, while the branch in A1 < Ac is unstable.

For a given g0, assuming a solution exists, we can define

M(g0) = −
∫ ∞

0
(F0 − 1) dξ. (39)

At the following order, as before, (23) may be integrated to give (24). The local behaviour
near ξ = 0 also contains two parameters, one to suppress the growing far-field eigenmode and
one to normalise F1 so that it has unit integral. Thus F1 ∼ D1[ξ + D2ξ

2 + O(ξ 5)], where
D1(g0) and D2(g0) can be determined numerically. The formulation in (37) ensures volume
conservation: the mass excess or deficit in F0 distributes itself through the F1 term. In contrast
to the large hump case, we can predict M a priori using (39).

5. Discussion

We have shown, through numerical solution of evolution equations and supporting large-time
asymptotics, that a spatially unbounded thin film coating a sufficiently large hump readjusts
to form a quasi-static puddle bounded by an effective contact line at which the local minimum
film thickness hmin → 0 as t → ∞. As time increases, the contact line drifts slowly towards
a limiting position. This position is determined by the transient dynamics: as the film pinches
off, it traps a certain volume of fluid in the puddle and this volume dictates the contact-line’s
ultimate location. Using an evolution equation based on lubrication theory but accounting
accurately for mass conservation and interfacial curvature, we found that thin-film flow in a
sharp corner exhibits broadly similar features. This suggests that similar behaviour can also
be expected when liquid bridges form between touching wet surfaces.

In practice, numerous physical effects that we have neglected here may be important. We
have allowed the film to readjust through the formation of a capillary wave that propagates
off into the far field. In any practical situation, the wave will reach a boundary, so that at
sufficiently large times the effect of a far-field no-flux boundary condition (for example) will
be felt by the film ahead of the contact line. At very large times the puddle is likely to adjust
slowly to new configurations dependent on the total volume of fluid in the domain. The solu-
tions we present here therefore have value as intermediate asymptotics. Further effects that
are likely to be significant in practical applications include disjoining forces causing the film
to rupture once it thins sufficiently, surfactant causing interfacial immobilisation and further
changes in the shape or length of the underlying substrate.

For shallow humps, a qualitatively different flow structure emerges. We calculated mem-
bers of the family of similarity solutions describing an unsteadily propagating capillary wave
that connects directly onto the top of the hump at large times. This family has a turning point
when parameterized by the hump height (Figure 16), so that no solutions exist for hump
heights in excess of gc ≈ 3·36 times the far-field film thickness. Our simulations support
the conjecture that one branch of similarity solutions is stable, the other is unstable, as il-
lustrated schematically in Figure 17. (We did not explicity test the stability of the unstable
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Figure 17. A conjectured schematic bifurcation diagram indicating the evolution of flow off humps with different
maximum heights. For g0 < 3·36 (case A), the initially uniform state approaches a similarity solution at large
times for which local minimum at the edge of the puddle hmin is bounded away from zero; for g0 > 3·36,
hmin → 0 as t → ∞. In case B the evolution is likely to be slow in the neighbourhood of the turning point P; the
evolution is more rapid in case C.

branch by integrating numerically using suitable initial conditions.) On the stable branch, the
local minimum in film depth at the edge of the quasi-static puddle adjacent to the hump is
bounded away from zero, and the minimum advances away from the hump approximately
like t1/4. Because hmin does not approach zero, mass is not trapped in the puddle, but instead
redistributes in a way that can be determined via large-time asymptotic analysis. For hump
heights in excess of 3·36, an initially uniform-thickness film ultimately pinches off, with
hmin → 0 as t → ∞. We conjecture that pinch-off may also occur for g0 < gc provided
suitable initial conditions are chosen, but we did not explore that possibility here. Simulations
indicate that it may sometimes be difficult to distinguish between pinch-off and no-pinch-off
behaviour experimentally, because for near-critical hump heights (e.g., case B in Figure 17, or
the simulation shown in Figure 13b,d,f) the distinction between such solutions emerges only
at very large times. However, it should be possible to verify the predictions of this analysis for
more extreme hump heights. We conjecture that similar flow structures also arise for shallow
corners, although we have not investigated that limit here.
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